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From time to time, existing aircraft need to be redesigned for new missions with mod-
ified operating conditions such as required lift or cruise speed. This research is motivated
by the needs of conceptual and preliminary design teams for smooth airfoil shapes that are
similar to the baseline design but have improved drag performance over a range of flight
conditions. The proposed modified profile optimization method (MPOM) modifies a large
number of design variables to search for nonintuitive performance improvements, while
avoiding off-design performance degradation. Given a good initial design, the MPOM
generates fairly smooth airfoils that are better than the baseline without making drastic
shape changes. Moreover, the MPOM allows users to gain valuable information by ex-
ploring performance trades over various design conditions. Four simulation cases of airfoil
optimization in transonic viscous flow are included to demonstrate the usefulness of the
MPOM as a performance trades study tool. Simulation results are obtained by solving
fully turbulent Navier-Stokes equations and the corresponding discrete adjoint equations

using an unstructured grid computational fluid dynamics code FUN2D.

Nomenclature

¢ chord length of airfoil

Cd drag coefficient

% gradient of ¢4 with respect to D
% derivative of ¢4 with respect to «
a lift coefficient

% gradient of ¢; with respect to D
% derivative of ¢; with respect to «
cf target lift coefficient

D design vector

AD change in design vector

E() mean of random variable

F feasible set for the design vector D
M free-stream Mach number

n number of design variables

p(M) probability density function of Mach number
r number of design conditions

T,y coordinates of points on the plane
e angle of attack

Y target drag reduction rate

Ok.i, p scalars defining the trust region

Q a given Mach range

o2 (+) variance of random variable

Copyright © 2003 by the American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States
under Title 17, U.S. Code. The U.S. Government has a royalty-
free license to exercise all rights under the copyright claimed herein
for Governmental Purposes. All other rights are reserved by the
copyright owner.

Th,i trades factors

() inner product in Euclidean space

Subscripts and Superscripts

i index for design condition
J index for component of design vector
k index for iteration or iterate

Introduction

With tremendous advances in sensitivity calculation
by using either continuous or discrete adjoint meth-
ods, lift-constrained drag minimization methods or
variations (called direct optimization) for aerodynamic
shape optimization are gradually gaining acceptance
in engineering design community.! The most notable
one is Boeing’s use of TRANAIR in its commercial air-
craft design process. However, inverse design tools? 3
are still very popular among designers working on real-
world design projects.

Intrigued by Drela’s discovery? that multipoint op-
timization method for lift-constrained drag minimiza-
tion might produce airfoils with shock bumps corre-
sponding to design conditions, resulting in off-design
performance degradation, researchers at NASA Lan-
gley Research Center initiated activities to address
off-design performance degradation problems by using
various robust optimization approaches®® with the de-
sign space parameterized by B-spline control points.
Interestingly, Nemec, Zingg, and Pulliam® used B-
spline control points as design variables for multipoint
airfoil shape optimization, and obtained an optimal
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airfoil that seems to be free of off-design performance
degradation (see figure 16 in Ref. 9).

Despite these efforts, a barrier for practical appli-
cation of lift-constrained drag minimization methods
is that a desirable drag rise curve does not necessar-
ily mean a useful airfoil design. Many design aspects
can not be captured by optimization models that are
based only on lift-constrained drag minimization or its
variations.

Our recent effort is to find out whether we can gen-
erate realistic airfoil shapes by using a lift-constrained
drag minimization approach for design problems. Sim-
ulation results given in Ref. 10 indicate that by solving
a lift-constrained drag minimization problem adap-
tively, it is possible to produce fairly realistic im-
proved airfoils with no off-design performance degra-
dation. Encouraged by the preliminary simulation
results given in Ref. 10, we wanted to find out whether
we could use the profile optimization method proposed
by Li et al.®> as a performance trades study tool for
airfoil shape optimization problems. The result is the
modified profile optimization method (MPOM) pro-
posed in this paper. We will use four simulation cases
to demonstrate that (i) the MPOM can generate fairly
realistic improved airfoil designs in transonic viscous
flow, (ii) the trades strategies in MPOM are intuitive
to users and easy to use, and (iii) the MPOM allows
users to generate an improved airfoil design in each op-
timization iteration (a benefit of descent optimization
methods).

The paper is organized as follows. First, we present
the standard robust optimization formulation for air-
foil shape optimization, which is the theoretical foun-
dation for the MPOM. Then we give a fairly detailed
description of MPOM. Numerical results for four sim-
ulation cases of redesigns of the RAE2822 airfoil* and
Whitcomb’s integral supercritical airfoil'! in transonic
viscous flow are included to demonstrate the potential
of the MPOM as a practical performance trades study
tool. The paper ends with concluding remarks.

Robust Optimization Model for Airfoil
Shape Optimization

One plausible approach to avoid off-design perfor-
mance degradation is to use the standard robust opti-
mization model,'? which is a multiobjective optimiza-
tion problem that seeks to minimize both the mean
and variance of a performance measure (such as drag).
For lift-constrained drag minimization over a range of
Mach numbers, a robust optimization problem can be
formulated as follows:

min (E(cd), a(cd)) (1)

D,a(M)
subject to D € F and

c(D,a(M),M)=c/(M) for M €Q. (2)

Here ¢/ (M) is the target lift requirement for Mach
number M, F is a given feasible set for geometric de-
sign variables (that could be defined by geometry con-
straints such as specified thickness constraints), and
a(M) is the angle of attack corresponding to M. The
drag and lift coefficients are ¢4 and ¢;, respectively.
The mean and variance of ¢4 are defined as

B(ca) = / ca(D, a(M), M) - p(M) dM,
o (eq) = /Q [ca(D, a(M), M) — E(cq)]? p(M) dM,

where p(M) is a probability density function of M and
 is a given Mach range (such as from M = 0.68 to
M = 0.77). Note that it is important to use equal-
ity constraints for the target lift instead of inequality
constraints for the minimum lift (¢; > ¢;*). The latter
tends to confuse an optimization code when increasing
the angle of attack can increase the lift and reduce the
drag simultaneously.

The robust optimization model (1) addresses some
important issues in aerodynamic shape optimization.
For example, to avoid off-design performance degrada-
tion, one can reduce o(c4) as much as possible. Note
that if o(¢g) = 0, the corresponding optimal airfoil will
have the same (perhaps poor) performance over the
given Mach range. On the other extreme, one could
minimize E(c4) as much as possible to improve the av-
erage performance. In general, Pareto solutions to (1)
can be used to study trade-offs between average per-
formance improvement and performance fluctuations
over the Mach range. However, due to the high com-
putational cost for solving Navier-Stokes equations, it
is not practical to obtain reasonable estimates of E(c4)
and o(cq).

One alternative way to avoid off-design performance
degradation is to find a descent direction that could re-
duce the drag simultaneously and proportionally over
the given Mach range while keeping the lift at the
target value. The profile optimization method was
designed to find such a descent direction with the
limited information on lift and drag over the given
Mach range. The innovative feature of the profile
optimization method is to adaptively change the ob-
jective function from iteration to iteration to achieve
simultaneous and proportional drag reduction over the
given Mach range, which results in an improved de-
sign with no off-design performance degradation. In
contrast to methods that minimize one aggregate ob-
jective function to find a Pareto optimal solution to a
multiobjective optimization problem, the profile op-
timization method does not solve any optimization
problem with one predetermined objective function;
instead, it looks for a Pareto optimal solution that
has the least chance of off-design performance degra-
dation. Using numerical simulations, we demonstrated
that the profile optimization method has the potential
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to be used by designers for generating practical robust
designs.!?

In the next section, we introduce the MPOM that
could be used for exploring Pareto optimal solutions

of (1).
Modified Profile Optimization Method

Let D° be a given initial design vector, let
My,..., M, be a set of design points over the given
Mach range, and & = 0. Construct a sequence of de-
sign vectors as follows:

1. Compute feasible angles of attack. Find oy g,
2k, - ., O such that

a(D¥ app, M;) =¢f; for 1<i<r.

2. Solve a trust region subproblem. Let ¢4, and
ci,i,k be the linear approximations of the drag and
lift at (Dk,ai,k):

ik (AD, Aa;) = ¢ (D", a1, M;)
acl acl
+ <6—D,AD> + a_aAa“
caik(AD, Aa;) = cg(D¥, a; i, M;)

8cd acd
+ <6—D,AD> + a—aAOéZ,

where the derivatives are evaluated at
(D*, a; 1, M;). Choose a target drag reduc-
tion rate 7y, (about 1%-4%) and trade-off factors
Ti,i with 0 < 7;; < 1. Consider the following
trust region subproblem:

3
N (3)
subject to

D¥ + AD € F,

—0jkpr < ADj < bjppr for 1<j<n,

—ap <Aa; <ap forl1<i<r,

cin(AD, Aay) = cf; for 1 <i<r,
caik(AD, Aci) < (1= nmki) - ca(D*, i, M;)
for 1<i <,

where d; > 0, pr > 0, and o > 0 are scalars
that determine the trust region, and D*4+AD € F
means that the airfoil corresponding to (D¥+AD)
satisfies all the geometric constraints. (For our
simulation runs, d;; is approximately the thick-
ness of the airfoil at the z-coordinate of the ith
control point, ar = 1 (because feasible angles
of attack are determined by the target lift con-
straints and the shape change), and D*¥ + AD ¢
F means that the airfoil satisfies thickness con-
straints at two spar locations and at the maxi-
mum thickness location.) Determine the smallest

pr > 0 such that (3) is feasible and the least norm
solution (AD*, Aay ,..., A, ) of (3) satisfies
the following condition:

ca,ik(AD*, A ) < (1 — ye7i,i)ca(DF, o g, M;)
for1<i<r.

3. Generate the new iterate. Let D¥*1 = D+ AD*¥.

4. Start a new iteration. Update k by k + 1 and go
back to step 1.

In the special case when 7, ; = 1, the MPOM re-
duces to the profile optimization method proposed by
Li et al.> The MPOM tries to find a Pareto solution
of the following multiobjective optimization problem:

min  (cq(D,aq, My),...,ca(D,a,, M,.)) (4)

D,aq,...,an
subject to
DeF and ¢(D,a;,M;) = czi for1<i<r.

The multipoint optimization method is a weighted sum
approach for solving (4). The MPOM is an adaptive
minimax approach for solving (4). It can be used inter-
actively by designers to explore various ways to reduce
the drag over the given Mach range by using different
values of 7 ;.

If v is adjusted according to certain convergence
criteria, and the multiobjective optimization problem
(4) satisfies certain regularity conditions, then it is
possible to prove that any accumulation point of the
generated iterate sequence is a Pareto optimal solu-
tion. Because our focus is to develop practical tools
for airfoil shape optimization, we do not address the
convergence issue herein.

It is worth pointing out that a simultaneous reduc-
tion of the drag over the Mach range always decreases
the mean of the drag, while proportional reduction
of the drag over the Mach range may decrease the
variance of the drag.® Therefore, the MPOM can be
considered as an approximation method for finding a
Pareto solution to (1) by solving (4) adaptively.

Numerical Simulation Results

We use the MPOM for four cases of airfoil shape de-
sign optimization in transonic viscous flow, with target
drag reduction rate -y, = 2% for all the iterations.

The first two cases simulate redesigns of the
RAE2822 airfoil* over the Mach range from 0.68 to
0.76. We adopt the four design conditions used in
Drela’s simulation:* M; = 0.68, My = 0.71, M3z =
0.74, and My = 0.76, with the target lift at 0.733 and
Reynolds number 2.7 x 108. The first case uses the pro-
file optimization method (i.e., 7,; = 1), which tries to
reduce the drag at all the design conditions simulta-
neously and proportionally. The second case uses the
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modified profile optimization method with the trade-
off factors 7, ; = 0.1 for ¢ = 1,2,3 and 74 4 = 1, which
tries to reduce the drag at M = 0.76 while keeping
the drag at the other design conditions unchanged or
improved.

The last two cases simulate redesigns of Whitcomb’s
integral supercritical airfoil'! over the Mach range
from 0.68 to 0.77. For these two cases, we use the fol-
lowing four design conditions: M; = 0.68, My = 0.71,
M3 = 0.74, and M, = 0.77, with the target lift at 0.7
and Reynolds number 2.7 x 10%. For target lift at 0.7,
the intended cruise condition for supercritical airfoils
(with 11% maximum thickness) is about M = 0.77
(see figure 29 in Ref. 11). The third case uses the pro-
file optimization method and the fourth case uses the
MPOM with the same trade-off factors as in case 2.

Computational Models

For a given airfoil, the lift and drag coefficients and
their gradients are calculated by solving fully turbu-
lent Navier-Stokes equations and the corresponding
discrete adjoint equations using an unstructured grid
computational fluid dynamics code FUN2D.!? In both
cases, the unstructured grid has 300 grid points on
the airfoil and 32 grid points on the far field (which
is placed at 20 chord lengths). The unstructured grid
has a total of 18660 grid points, 55649 elements, and
37320 faces, which is almost the same as the grid used
in Ref. 10. With the given grid, the flow solver and
the adjoint solver are terminated when the 2-norms of
the residual of the density equations and its adjoint
counterpart are reduced by at least five orders of mag-
nitude.

— Integral Supercritical Airfoil
-006F, ‘ ‘ ‘ ) . [ inegral Supercritcal Airfoil |

0 0.1 0.2 0.3 0.4 015 0.6 0.7 0.8 0.9 1
x/c
Fig. 1 RAE2822 airfoil and Whitcomb’s integral

supercritical airfoil parameterized by 51 cubic B-
spline control points.

Airfoils are parameterized by cubic B-spline control
points. See figure 1 for RAE2822 airfoil and Whit-
comb’s integral supercritical airfoil parameterization.
The z-coordinates of all the control points are fixed
during optimization. Changes of the y-coordinates of

the seven control points near the trailing edge (black
circles in figure 1) are constrained to be the same. We
use these geometric constraints because the optimizer
may not be able to make a reasonable modification of
the shape of the trailing edge at very fine scales. All
the y-coordinates of the 51 control points are used as
shape design variables. In all cases, we impose a mini-
mum thickness constraint at spar locations z/c = 0.15
and z/c = 0.6 and at the maximum thickness loca-
tion. For each iterate D*. we find angles of attack
a1k, ..., such that | (D¥, aq 5, M) — ¢l /¢y <
0.001.

Drag Reduction Over the Given Mach Range

Figures 2 and 3 show the history of actual drag
changes at the design conditions. Note that the
predicted drag values at the design conditions do
not necessarily match the actual drag values for a
new iterate. For example, for several iterations
in case 1, at least one of the linear estimations
Cl’@k(ADk,Aai’k) and Cd’i’k(ADk,AaiJ@) of the lift
value ¢;(D**1 ;1 + Aayk, M;) and the drag value
ca(D**Y a1, + Aay i, M;), respectively, is not accu-
rate for M = 0.68. Possible sources for the estimation
errors include: (i) either ADF or Aq; is too large
for linear Taylor approximations to be accurate, (ii)
some of the gradient components are not accurate,
and (iii) the geometry change AD¥ is small, but the
B-spline curve corresponding to AD¥ is oscillatory.?
By examining the detailed output information from
the MPOM, we found that the estimation errors are
mainly due to reasons (i) and (iii).
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Fig. 2 Changes of drag counts at four design con-
ditions for cases 1 and 2 with target lift 0.733.

For each case, the intended drag reduction strategy
will fail after a number of iterations. For example, in
case 1, the intended drag reduction at M = 0.68 could
not, be achieved; in case 2, the intent was to reduce
the drag at M = 0.76 while keeping the drag at other
design conditions unchanged or improved. However, at
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Fig. 3 Changes of drag counts at four design con-
ditions for cases 3 and 4 with target lift 0.7.

the 14th iteration, the drag at the first design condition
increases noticeably. In actual design process, perhaps
one should increase the values of 7 ; at M; = 0.68
and Ms = 0.71 and see whether the MPOM could
yield a useful new airfoil according to the intended
drag reduction strategy. For comparison purpose, we
pick the 10th iterate for cases 1 and 2, while the 13th
iterate is selected for cases 3 and 4.

Figure 4 shows the drag rise curves over the Mach
range for the selected iterates. The drag rise curves are
constructed by using 10 equally spaced Mach numbers
from 0.68 to 0.77, which include four design points
and six off-design points. The MPOM reduces the
drag of the baseline over the given Mach range with no
off-design performance degradation, except in case 4
where a drag creep occurs between design points M =
0.74 and M = 0.77. This is due to excessive drag
reduction at M = 0.77.

T T T T T T T T T
—— RAE2822 Airfoil 200H —— Integral Supercritical Airfoil
500 — 10th Iterate of Case 1 1 —#— 13th Iterate of Case 3
—©- 10th Iterate of Case 2 —©— 13th Iterate of Case 4
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0.68 0.7 072 074 076 0.68 0.7 072 074 076
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Fig. 4 Postoptimization analysis of drag over the
given Mach range. The target lift for cases 1 and
2 is 0.733, while the target lift for cases 3 and 4 is
0.7.

Airfoil Shapes and Pressure Distributions

We include the airfoil shapes and pressure distribu-
tions to show that they are quite realistic and that
minor modifications of the baseline could lead to sig-
nificant performance improvement without off-design
performance degradation.

Figures 5-8 show the airfoils generated by the
MPOM. The vertical lines indicate the locations for
thickness constraints. The generated airfoils are not
free of bumps. In particular, supercritical airfoils
(cases 3 and 4) show bumps at the lower surface near
the leading edge and the upper surface near z/c = 0.7.
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— - RAE2822 Airfoil
— 10th Iterate for Case 1
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I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5 The 10th airfoil generated by the MPOM

for case 1.
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ylc

-0.02
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— - RAE2822 Airfoil
— 10th Iterate for Case 2

-0.06 -

I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6 The 10th airfoil generated by the MPOM

for case 2.

Pressure distributions for the baseline and the gen-
erated airfoils are plotted in figures 9-12.

Concluding Remarks
From time to time, existing aircraft need to be re-
designed for new missions with modified operating
conditions such as required lift or cruise speed. This
research is motivated by the needs of conceptual and
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Fig. 7 The 13th airfoil generated by the MPOM

for case 3.
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Fig. 8 The 13th airfoil generated by the MPOM
for case 4.
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Fig. 9 Pressure distributions at the design condi-
tions for case 1.

preliminary design teams for smooth airfoil shapes
that are similar to the baseline design but have im-

Pressure
Pressure

RAE2822 at M=0.68 — - RAE2822 at M=0.71
1.00 —— 10th Iterate of Case 2 1.00 — 10th Iterate of Case 2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/c x/c

Pressure
Pressure

RAE2822 at M=0.74 — - RAE2822 at M=0.76
1.00 —— 10th Iterate of Case 2 1.00 —— 10th Iterate of Case 2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/c x/c

Fig. 10 Pressure distributions at the design con-
ditions for case 2.
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Fig. 11
ditions for case 3.
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Fig. 12 Pressure distributions at the design con-
ditions for case 4.

proved drag performance over a range of flight con-
ditions. The MPOM modifies a large number of de-
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sign variables to search for nonintuitive performance
improvements, while avoiding off-design performance
degradation. Given a good initial design, the MPOM
generates fairly smooth airfoils that are better than
the baseline without making drastic shape changes.
Moreover, users gain valuable information by explor-
ing performance trades over various design conditions.

The MPOM allows users to choose different rates
of drag reduction at the design conditions for perfor-
mance trades study. The strategy of forcing simultane-
ous (predicted) drag reduction at all design conditions
helps to alleviate off-design performance degradation
that weighted average approaches of multipoint opti-
mization methods might encounter when a high reso-
lution design space is used. However, it is important
not to reduce drag excessively at a particular design
point in order to prevent off-design performance degra-
dation.

We use four cases of airfoil shape optimization in
transonic viscous flow to demonstrate the usefulness
of the MPOM as a performance trades study tool. An
unstructured grid computational fluid dynamics code,
FUN2D,'? is used to predict the lift and drag values
and their gradients with respect to changes in airfoil
shape and angle of attack. The MPOM is able to
generate fairly smooth airfoils with no off-design per-
formance degradation over the range of Mach numbers
with 51 B-spline coefficients as design variables and 4
design conditions.

To use airfoils generated by the MPOM for design
projects, postoptimization airfoil smoothing is still
necessary. Of course, the performance characteristics
of the resulting airfoil after smoothing is somewhat un-
predictable. Our future research will integrate airfoil
smoothing and the MPOM so that improved smooth
airfoils with no off-design performance degradation can
be generated for performance trades study.
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